Linear Algebra MCQs and MSQs with Solutions for CSIR NET, IIT JAM : Linear Transformation - IV

Practice Questions for NET JRF Linear Algebra <br> Assignment: Linear Transformation

31. Let \(M\) be the real vector space of \(2 \times 3\) matrices with real entries. Let \(T: M \rightarrow M\) be defined by

\(T\left(\begin{bmatrix} x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6} \end{bmatrix}\right) = \begin{bmatrix}-x_{6} & x_{4} & x_{1} \\ x_{3} & x_{5} & x_{2}\end{bmatrix}\).

Then the determinant of \(T\) is:





32. Let the linear transformation \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}\) be defined by

\(T(x_{1}, x_{2}) = (x_{1}, x_{1}+x_{2}, x_{2})\).

Then the nullity of \(T\) is:





33. Let \(P_{3}=\{p(x) \mid p(x)\) be a polynomial with real coefficients and degree at most 3\} and \(T: P_{3} \rightarrow P_{3}\) be the map given by

\(T(p(x)) = \int_{1}^{x} p^{\prime}(t) dt\).

If the matrix of \(T\) relative to the standard bases \(B_{1}=B_{2}=\{1, x, x^{2}, x^{3}\}\) is \(M\) and \(M^{\prime}\) denotes the transpose of the matrix \(M\), then \(M+M^{\prime}\) is:





34. If the nullity of the matrix

\(\begin{bmatrix}k & 1 & 2 \\ 1 & -1 & -2 \\ 1 & 1 & 4\end{bmatrix}\)

is 1, then the value of \(k\) is:





35. Let \(T: P_{3}[0,1] \rightarrow P_{2}[0,1]\) be defined by

\(T(p(x))=p^{\prime \prime}(x)+p^{\prime}(x)\).

Then the matrix representation of \(T\) with respect to the bases \(\{1, x, x^{2}, x^{3}\}\) and \(\{1, x, x^{2}\}\) of \(P_{3}[0,1]\) and \(P_{2}[0,1]\) respectively is:






36. Let \(V\) be the column space of the matrix

\(\begin{bmatrix}1 & -1 \\ 1 & 2 \\ 1 & -1 \end{bmatrix}\).

Then the projection of \(\begin{bmatrix}0 \\ 1 \\ 0\end{bmatrix}\) on \(V\) is:





37. Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) be the linear transformation defined by

\(T\left(x_{1}, x_{2}, x_{3}\right)=(x_{1}+3 x_{2}+2 x_{3}, 3 x_{1}+4 x_{2}+x_{3}, 2 x_{1}+x_{2}-x_{3})\).

I. The dimension of the range space of \(T^{2}\) is:





II. The dimension of the null space of \(T^{3}\) is:





38. Let \(T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}\) be the linear map satisfying

\(T(e_{1})=e_{2}, T(e_{2})=e_{3}, T(e_{3})=0, T(e_{4})=e_{3}\)

Where \(\{e_{1}, e_{2}, e_{3}, e_{4}\}\) is the standard basis of \(\mathbb{R}^{4}\). Then:





39. For any \(n \in \mathbb{N}\), let \(P_{n}\) denote the vector space of all polynomials with real coefficients and of degree at most \(n\). Define \(T: P_{n} \rightarrow P_{n+1}\) by

\(T(p)(x)=p^{\prime}(x)-\int_{0}^{x} p(t) dt\).

The dimension of the null space of \(T\) is:





40. Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) be a linear transformation defined by \(T((x, y, z))=(x+y-z, x+y+z, y-z)\). Then the matrix of the linear transformation \(T\) with respect to the ordered basis \(B=\{(0,1,0),(0,0,1),(1,0,0)\}\) of \(\mathbb{R}^{3}\) is:





Post a Comment

0 Comments