81. Consider the matrix \(M=\begin{bmatrix}a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2\end{bmatrix}\) Then the matrix has
82. Let \(A\) be a non-zero upper triangular matrix all of whose eigenvalues are 0. Then \(I+A\)
83. The eigenvalues of a skew-symmetric matrix
84. Let \(A\) be a \(3 \times 3\) matrix with eigenvalues \(1, -1, 0\). Then the determinant of \(I+A^{100}\) is
85. The eigenvalues of a \(3 \times 3\) real matrix \(P\) are
86. Let \(-T: \mathbb{C}^n \rightarrow \mathbb{C}^n\) be a linear operator having \(n\)-distinct eigen values. Then
87. Let \(U\) be a \(3 \times 3\) complex Hermitian matrix which is Unitary. Then the distinct eigenvalues of \(U\) are
88. Let \(A\) be an \(n \times n\) complex matrix whose the characteristic polynomial is given by \(f(t)=t^n+c_{n-1} t^{n-1}+\ldots . .+c_1 t+c_0\). Then
89. Let \(T: C^n \rightarrow C^n\) be a linear operator rank \(n-2\). Then
90. For \(0<\theta<\pi\), the matrix \(\begin{bmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\)
91. Let \(P\) and \(Q\) be square matrices such that \(P Q=I\), the identity matrix. Then zero is an eigenvalue of
92. Let \(A\) and \(B\) be \(n \times n\) matrices with the same minimal polynomial. Then
93. Let \(A\) be an \(n \times n\) matrix which is both Hermitian and unitary. Then
94. A matrix \(M\) has eigen values 1 and 4 with corresponding eigen vectors \((1,-1)^T\) and \((2,1)^T\), respectively. Then \(M\) is
95. Let \(A=\left(a_{i j}\right)\) be an \(n \times n\) matrix such that \(a_{i j}=3\) for \(i\) and \(j\). Then the nullity of \(A\) is
0 Comments