51. Let \(V\) be the vector space \(\mathbb{R}^2\) and let \(T\) be the linear transformation on \(V\) defined by \(T(x, y)=(x+y, y)\). Then the characteristic polynomial of \(T\) is
52. A \(2 \times 2\) real matrix \(A\) is diagonalizable then:
53. Let \(A\) be a \(3 \times 3\) complex matrix such that \(A^3=I\) (= the \(3 \times 3\) identity matrix). Then:
54. The minimal polynomial of the \(3 \times 3\) real matrix \(\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & a & b \end{bmatrix}\) is:
55. The characteristic polynomial of the \(3 \times 3\) real matrix \(A=\begin{bmatrix}0 & 0 & -c \\ 1 & 0 & -b \\ 0 & 1 & -a\end{bmatrix}\) is
56. Let \(M\) be a \(3 \times 3\) matrix and suppose that 1, 2, and 3 are the eigenvalues of \(M\). If \(M^{-1}=\frac{M^2}{\alpha}-M+\frac{11}{\alpha}I_3\) for some scalar \(\alpha \neq 0\), then \(\alpha\) is equal to
57. Let \(M\) be a \(3 \times 3\) singular matrix and suppose that 2 and 3 are eigenvalues of \(M\). Then the number of linearly independent eigenvectors of \(M^3+2M+I_3\) is equal to
58. Let \(M\) be a \(3 \times 3\) matrix such that \(M\begin{bmatrix}-2 \\ 1 \\ 0\end{bmatrix}=\begin{bmatrix}6 \\ -3 \\ 0\end{bmatrix}\) and suppose that \(M^3\begin{bmatrix}1 \\ -1/2 \\ 0\end{bmatrix}=\begin{bmatrix}\alpha \\ \beta \\ \gamma\end{bmatrix}\) for some \(\alpha, \beta, \gamma \in \mathbb{R}\). Then \(\left|\alpha\right|\) is equal to
59. Let \(T: \mathbb{R}^4 \rightarrow \mathbb{R}^4\) be a linear map such that the null space of \(T\) is \(\{(x, y, z, w) \in \mathbb{R}^4: x+y+z+w=0\}\) and the rank of \((T-4I_4)\) is 3. If the minimal polynomial of \(T\) is \(x(x-4)^\alpha\), then \(\alpha\) is equal to
60. Let \(M\) be an invertible Hermitian matrix and let \(x, y \in \mathbb{R}\) be such that \(x^2<4y\). Then
0 Comments