Linear Algebra MCQs and MSQs with Solutions for CSIR NET, IIT JAM : System of Equations - IV

Practice Questions for NET JRF Linear Algebra <br> Assignment: System of Equations

31. The solutions to the system of equations :

\((1-i) x_{1}-i x_{2}=0\)

\(2 x_{1}+(1-i) x_{2}=0\) is given by:





32. Let \(A\) be an \(m \times n\) matrix where \(m





33. The system \(A x=0\), where \(A\) is an \(n \times n\) matrix,





34. Let \(\mathrm{P}\) be a matrix of order \(m \times n\) and \(\mathrm{Q}\) be a matrix of order \(n \times p\), \(n \neq p\). If \(\operatorname{rank}(\mathrm{P})=n\) and \(\operatorname{rank}(\mathrm{Q})=p\), then \(\operatorname{rank}(\mathrm{P Q})\) is





35. Let \(\mathrm{A}\) be a \(m \times n\) matrix with row rank \(r=\) column rank. The dimension of the space of solutions of the system of linear equations \(\mathrm{AX}=0\) is





36. Let \(\mathrm{M}\) be a \(m \times n(m < n)\) matrix with rank \(m\) Then





37. Consider the system of linear equations

\(a_{1} x+b_{1} y+c_{1} z=d_{1}\),

\(a_{2} x+b_{2} y+c_{2} z=d_{2}\),

\(a_{3} x+b_{3} y+c_{3} z=d_{3}\),

Where \(a_{i}, b_{i}, c_{i}, d_{i}\) are real numbers for \(1 \leq i \leq 3\). If \(\left|\begin{array}{lll}b_{1} & c_{1} & d_{1} \\ b_{2} & c_{2} & d_{2} \\ b_{3} & c_{3} & d_{3}\end{array}\right| \neq 0\) then the above system has





38. Let \(A=\left(\begin{array}{ccc}12 & 24 & 5 \\ x & 6 & 2 \\ -1 & -2 & 3\end{array}\right)\). The value of \(x\) for which the matrix \(A\) is not invertible is





39. Let \(A=\left(\begin{array}{ll}\pi & p \\ q & r\end{array}\right)\) where \(p, q, r\) are rational numbers. If \(\operatorname{det} A=0\) and \(p \neq 0\) then the value of \(q^{2}+r^{2}\)





40. Let \(A=\left(\begin{array}{ll}a & \pi \\ \pi & \frac{1}{49} \end{array}\right)\), where \(a\) is a real number. Then, \(\mathrm{A}\) is invertible





41. Let \(\mathrm{A}\) be an \(n \times n\) invertible matrix with integer entries and assume that \(A^{-1}\) also only integer entries. Then,





42. The determinant \(\left|\begin{array}{cccccc}x_{0} & x & x_{2} & x_{3} & x_{4} \\ x_{0} & x_{1} & x & x_{3} & x_{4} \\ x_{0} & x_{1} & x_{2} & x & x_{4} \\ x_{0} & x_{1} & x_{2} & x_{3} & x\end{array}\right|\) equal to





43. For real numbers \(a, b, c\), the following linear system of equations

\(x+y+z=1\)

\(a x+b y+c z=1\)

\(a^{2} x+b^{2} y+c^{2} z=1\)

has a unique solution if and only if





44. Let \(M=\left[\begin{array}{ccc}1 & 1 & 0 \\ -1 & 1 & 2 \\ 2 & 2 & 0 \\ -1 & 0 & 1\end{array}\right]\). Then the rank of \(M\) is





45. Let \(D_{1}=\operatorname{det}\left(\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right)\) and

\(D_{2}=\operatorname{det}\left(\begin{array}{ccc}-x & a & -p \\ y & -b & q \\ z & -c & r\end{array}\right)\). Then





Post a Comment

0 Comments