21. If \(f\) and \(g\) are analytic on the same region \(D\) and if \(f(z) g(z)=0\) for all \(z\) in the region \(D\) then
22. Let \(C=\{z \in \mathbb{C}:|z-i|=2\}\) Then \(\frac{1}{2 \pi} \oint_{C} \frac{z^{2}-4}{z^{2}+4} d z\) is equal to
23. Let \(\Omega=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}\) and let \(C\) be a smooth curve lying in \(\Omega\) with initial point \(-1+2 i\) and final point \(1+2 i\). The value of \(\int_{C} \frac{1+2 z}{1+z} d z\) is
24. Let \(\int_{C}\left[\frac{1}{(z-2)^{4}}-\frac{(a-2)^{2}}{z}+4\right] d z=4 \pi\), where the closed curve \(C\) is the triangle having vertices at \(i,\left(\frac{-1-i}{\sqrt{2}}\right)\) and \(\left(\frac{1-i}{\sqrt{2}}\right)\),
25. Let \(r=\int_{\mathcal{C}} \frac{f(z)}{(z-1)(z-2)} d z\), \(f(z)=\sin \frac{\pi z}{2}+\cos \frac{\pi z}{2}\) and \(C\) is the curve \(|z|=3\) oriented anti-clockwise. Then the value of \(r\) is
26. Let \(S\) be open unit disk and \(f: S \rightarrow \mathbb{C}\) be a real valued analytic function with \(f(0)=1\), then the set \(\{z \in S: f(z) \neq 1\}\) is
27. Which one of the following does not hold for all continuous functions \(f:[-\pi, \pi] \rightarrow \mathbb{C}\)?
28. Let \(S\) be the positively oriented circle given by \(|z-2 i|=2\), then the value of \(\int_{S} \frac{d z}{z^{2}+4}\) is
29. Let \(f(z)\) be an analytic function, then the value of \(\int_{0}^{2 \pi} f\left(e^{i t}\right) \cos t d t\) equals
30. Define \(f: \mathbb{C} \rightarrow \mathbb{C}\) by \(f(z)=\begin{cases}0 & \text{if} \ \operatorname{Re}(z)=0 \\ z & \text{or} \ \operatorname{Im}(z)=0\end{cases}\) then the set of points where \(f\) is analytic is
0 Comments