Practice Questions for CSIR NET Complex Analysis : Meromorphic Functions II

Practice Questions for NET JRF Complex Analysis Assignment: Meromorphic Functions

11. If \(f\) is entire \(|f(z)| \leq A|z|^{n}\) for some positive integers \(n\) and then






12. Let \(f\) be an entire function on \(\mathbb{C}\) such that \(|f(z)| \leq 100 \log |z|\) for each \(z\) with \(|z| \geq 2\). If \(f(i)=2i\), then \(f(1)\)






13. Let \(f(z)\) be an entire function such that \(|f(z)| \leq K|z|\) for all \(z \in \mathbb{C}\), for some \(K>0\). If \(f(1)=i\), the value of \(f(i)\) is






14. Let \(f: \mathbb{C} \rightarrow \mathbb{C}\) be an arbitrary analytic function satisfying \(f(0)=0\) and \(f(1)=2\). Choose incorrect:



15. Let \(f(z)\) be an entire function such that for some constant \(\alpha, |f(z)| \leq \alpha|z|^{3}\) for \(|z| \geq 1\) and \(f(z)=f(iz)\) for all \(z \in \mathbb{C}\). Then






16. Let \(B\) be an open subset of \(\mathbb{C}\) and \(\partial B\) denote the boundary of \(B\). Which of the following statements are correct?






17. Let \(f: \mathbb{C} \rightarrow \mathbb{C}\) be a meromorphic function analytic at 0 satisfying \(f\left(\frac{1}{n}\right)=\frac{n}{2n+1}\) for \(n \geq 1\)






18. Let \(f\) be a polynomial function on the entire complex plane such that \(f(z) \neq 0\) for \(z\) with \(|z|=1\). Then \(\frac{1}{2 \pi i} \int_{|z|=1} \frac{f^{\prime}(z)}{f(z)} dz\)






19. If \(f: \mathbb{C} \rightarrow \mathbb{C}\) is analytic and real-valued then






20. Suppose \(f(z)=(z-1)(z-2)(z-3)^{3}\) and \(\Upsilon(t)=4 e^{i t}, 0 \leq t \leq 2 \pi\). Then the argument principle implies that \(\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} dz\) is






Post a Comment

0 Comments