2. Given that \(y_1(x) = x\) is a solution of the differentiable equation \(x^2 y^{\prime\prime} + 2xy^\prime - 2y = 0\).
Explanation: Let \(y_2(x) = x \cdot v(x)\) be a solution of \(x^2 y^{\prime\prime} + 2xy^\prime - 2y = 0\)
\(y_2^\prime = x \cdot v^\prime + v \quad \Rightarrow \quad y_2^{\prime\prime} = x \cdot v^{\prime\prime} + 2v^\prime\)
\(\Rightarrow 0 = x^3 v^{\prime\prime}(x) + 4x^2 v^\prime(x)\)
\(\Rightarrow x \cdot v^{\prime\prime}(x) + \left(2 + \frac{2}{x}x\right) v^\prime(x) = 0\)
\(\Rightarrow \frac{w^\prime(x)}{w(x)} = \frac{-4}{x} \quad \left[\text{If } w(x) = v^\prime(x)\right]\)
\(\Rightarrow w(x) = c_1x^{-4}\)
Therefore, \(v(x) = c_2\left(\frac{1}{x^3}\right) + c_3\)
\(\Rightarrow y_2(x) = c_2\left(\frac{1}{x^2}\right) + c_3x\)
0 Comments