11. Consider the series \(\sum \frac{1}{\sqrt{n}}\) and \(\sum \frac{1}{n^{3 / 2}}\). Then
12. If the terms of this oscillating series are grouped pairwise \(3-\frac{2^{2}+1}{2}+\frac{2^{3}+1}{2^{2}}-\frac{2^{4}+1}{2^{3}}+\ldots\), then the resulting series becomes
13. Which of the following series is divergent?
14. The largest interval in which the series \(\sum_{n=1}^{\infty} x^{n}\) converges
15. The series \(\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots\) is
16. The series \(x+\frac{2^{2} x^{2}}{2 !}+\frac{3^{3} x^{3}}{3 !}+\frac{4^{4} x^{4}}{4 !}+\ldots\) is convergent if
17. Consider the following statements:
1. If \(\sum_{n=1}^{\infty} u_{n}\) is a series of positive terms, then the convergence of \(\sum_{n=1}^{\infty}(-1)^{n} u_{n}\) implies the convergence of \(\sum_{n=1}^{\infty} u_{n}\).
2. If \(\sum_{n=1}^{\infty} u_{n}\) is a series of positive terms then the convergence of \(\sum_{n=1}^{\infty} u_{n}\) implies the convergence of \(\sum_{n=1}^{\infty}(-1)^{n} u_{n}\).
3. The convergence of \(\sum_{n=1}^{\infty} u_{n}\) \(\left(u_{n}>0\right)\) implies the convergence of \(\sum_{n=1}^{\infty} u_{n}^{2}\).
Select the correct answer using the codes given below
18. Let the series \(\sum_{n=1}^{\infty} u_{n}\) has bounded partial series, then the series \(\sum_{n=1}^{\infty} u_{n} v_{n}\) is convergent if the sequence \(\left\{v_{n}\right\}\) is
19. If \(p\) is a real number, then the series \(\frac{1}{1^{p}}+\frac{1}{3^{p}}+\frac{1}{5^{p}}+\frac{1}{7^{p}}+\ldots\). to \(\infty\) is convergent for
20. The series \(\frac{1}{1.4}+\frac{1}{2.5}+\frac{1}{3.6}+\ldots\). to \(\infty\) is
0 Comments