6. Choose correct statements:
Exp:
(a) Let \(S\) be a set; if \(S\) is empty or finite, then its derived set \(S^{\prime}\) is \(\phi\), which is a closed set.
For (b), (c), and (d), detailed explanations are provided.
(b) \(\overline{\bar{S}}=\overline{S \cup S^{\prime}}=\bar{S} \cup \overline{S^{\prime}}=\bar{S}\) as \(S^{\prime}\) is a closed set, so \(\overline{S^{\prime}}=S\).
(c) Let \(M\) be the supremum of a set \(S\) (say). Now if \(m \in S\), then \(m \in S \Rightarrow m \in S \cup S^{\prime} \Rightarrow m \in \bar{S}\).
When \(m \notin S\), then \(m \notin S \Rightarrow m \in S^{\prime} \Rightarrow m \in S \cup S^{\prime}=\bar{S}\).
So \(m \in \bar{S}\). Similarly for infimum can be proved.
(d) Consider the set \(S=\{\pm 1,1,-1 \frac{1}{2}, 1 \frac{1}{2},-1 \frac{1}{3}, 1 \frac{1}{3}, \ldots\}\)
Let \(\inf S=-1 \frac{1}{2}\) and \(\sup S=1 \frac{1}{2}\).
\(S^{\prime}=\{-1,1\}\)
0 Comments