Linear Algebra MCQs and MSQs with Solutions for CSIR NET, IIT JAM : Bilinear and Quadratic Forms - II

Practice Questions for NET JRF Linear Algebra Assignment: Bilinear and Quadratic Forms

11. Consider the quadratic form \(q(x, y, z)=4 x^2+y^2-z^2+4 x y\) over \(\mathbb{R}\). Which of the following statements about range of values taken by \(q\) as \(x, y, z\) vary over \(\mathbb{R}\), are true?






12. Let \(J\) be the \(3 \times 3\) matrix all of whose entries are 1. Then:






13. Let \(\zeta\) be a primitive fifth root of unity.

$$A=\begin{bmatrix}\zeta^{-2} & 0 & 0 & 0 & 0 \\ 0 & \zeta^{-1} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \zeta & 0 \\ 0 & 0 & 0 & 0 & \zeta^2\end{bmatrix}$$. If \(w=(1,-1,1,1,-1)\), then \(|w|_A\) equals






14. Let \(a_{i j}=a_i a_j, 1 \leq i, j \leq b\), where \(a_1, \ldots, a_n\) are real numbers. Let \(A=\left(\left(a_{i j}\right)\right)\) be the \(n \times n\) matrix \(\left(\left(a_{i j}\right)\right)\). Then






15. Suppose \(A, B\) are \(n \times n\) positive definite matrices and \(I\) be the \(n \times n\) identity matrix. Then which of the following are positive definite.






16. Let \(T\) be a linear transformation on the real vector space \(\mathbf{R}^n\) over \(\mathbf{R}\) such that \(T^2=\lambda T\) for same \(\lambda \in \mathbf{R}\). Then






17. The application of Gram-Schmidt process of orthonormalization to \(u_1=(1,1,0)\), \(u_2=(1,0,0)\), \(u_3=(1,1,1)\) yields






18. Consider the basis \(\left\{u_1, u_2, u_3\right\}\) of \(\mathbf{R}^3\); where \(u_1=(1,0,0)\), \(u_2=(1,1,0)\), \(u_3=(1,1,1)\). Let \(\left\{f_1, f_2, f_3\right\}\) be the dual basis of \(\left\{u_1, u_2, w_3\right\}\) and \(f\) be a linear functional defined by \(f(a, b, c)=a+b+c\), \((a, b, c) \in \mathbf{R}^3\). If \(f=\alpha_1 f_1+\alpha_2 f_2+\alpha_3 f_3\). then \((\alpha_1, \alpha_2, \alpha_3)\) is






19. Let \(\mathrm{M}=\begin{bmatrix}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{bmatrix}\) and \(V=\left\{M x^2: x \in R^3\right\}\). Then an orthonormal basis for \(V\) is






20. Consider \(\mathbf{R}^3\) with the standard inner product. Let \(S=\{(1,1,1),(2,-1,2),(1,-2,1)\}\). For a subset \(W\) of \(R^3\), let \(L(W)\) denote the linear span of \(W\) in \(R^3\). Then an arthonormal set \(\mathrm{T}\) with \(L(S)=L(T)\) is






Post a Comment

0 Comments