11. Consider the quadratic form \(q(x, y, z)=4 x^2+y^2-z^2+4 x y\) over \(\mathbb{R}\). Which of the following statements about range of values taken by \(q\) as \(x, y, z\) vary over \(\mathbb{R}\), are true?
12. Let \(J\) be the \(3 \times 3\) matrix all of whose entries are 1. Then:
13. Let \(\zeta\) be a primitive fifth root of unity.
$$A=\begin{bmatrix}\zeta^{-2} & 0 & 0 & 0 & 0 \\ 0 & \zeta^{-1} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \zeta & 0 \\ 0 & 0 & 0 & 0 & \zeta^2\end{bmatrix}$$. If \(w=(1,-1,1,1,-1)\), then \(|w|_A\) equals
14. Let \(a_{i j}=a_i a_j, 1 \leq i, j \leq b\), where \(a_1, \ldots, a_n\) are real numbers. Let \(A=\left(\left(a_{i j}\right)\right)\) be the \(n \times n\) matrix \(\left(\left(a_{i j}\right)\right)\). Then
15. Suppose \(A, B\) are \(n \times n\) positive definite matrices and \(I\) be the \(n \times n\) identity matrix. Then which of the following are positive definite.
16. Let \(T\) be a linear transformation on the real vector space \(\mathbf{R}^n\) over \(\mathbf{R}\) such that \(T^2=\lambda T\) for same \(\lambda \in \mathbf{R}\). Then
17. The application of Gram-Schmidt process of orthonormalization to \(u_1=(1,1,0)\), \(u_2=(1,0,0)\), \(u_3=(1,1,1)\) yields
18. Consider the basis \(\left\{u_1, u_2, u_3\right\}\) of \(\mathbf{R}^3\); where \(u_1=(1,0,0)\), \(u_2=(1,1,0)\), \(u_3=(1,1,1)\). Let \(\left\{f_1, f_2, f_3\right\}\) be the dual basis of \(\left\{u_1, u_2, w_3\right\}\) and \(f\) be a linear functional defined by \(f(a, b, c)=a+b+c\), \((a, b, c) \in \mathbf{R}^3\). If \(f=\alpha_1 f_1+\alpha_2 f_2+\alpha_3 f_3\). then \((\alpha_1, \alpha_2, \alpha_3)\) is
19. Let \(\mathrm{M}=\begin{bmatrix}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{bmatrix}\) and \(V=\left\{M x^2: x \in R^3\right\}\). Then an orthonormal basis for \(V\) is
20. Consider \(\mathbf{R}^3\) with the standard inner product. Let \(S=\{(1,1,1),(2,-1,2),(1,-2,1)\}\). For a subset \(W\) of \(R^3\), let \(L(W)\) denote the linear span of \(W\) in \(R^3\). Then an arthonormal set \(\mathrm{T}\) with \(L(S)=L(T)\) is
0 Comments