21. Let \(A=\begin{bmatrix}3 & 0 & 0 \\ 0 & 6 & 2 \\ 0 & 2 & 6\end{bmatrix}\) and let \(\lambda_1 \geq \lambda_2 \geq \lambda_3\) be the eigenvalue of \(\mathrm{A}\). The triple \((\lambda_1, \lambda_2, \lambda_3)\) equals
22. \(A=\begin{bmatrix}3 & 0 & 0 \\ 0 & 6 & 2 \\ 0 & 2 & 6\end{bmatrix}\) The matrix \(P\) such that \(P^{\prime} A P=\begin{bmatrix}\lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2\end{bmatrix}\) is
23. Let \(V\) be a vector space (over \(R\)) of dimension 7 and let \(f: V \rightarrow \mathbf{R}\) be a non-zero linear functional. Let \(W\) be a linear subspace of \(V\) such that \(V=\operatorname{Ker}(f) \oplus W\) where \(\operatorname{Ker}(f)\) is the null space of \(f\). What is the dimension of \(W\)?
24. Consider the following statements:
1. Let \(A\) be a hermitian \(N \times N\) positive definite matrix. Then, there exists a hermitian positive definite \(N \times N\) matrix \(B\) such that \(B^2=A\).
2. Let \(B\) be a nonsingular \(N \times N\) matrix with real entries. Let \(B^{\prime}\) be its transpose. Then \(B^{\prime} B\) is a symmetric and positive definite matrix.
25. Let \(A\) be a symmetric \(n \times n\) matrix with real entries, which is positive semi-definite, i.e., \(x^T A x \geq 0\) for every (column) vector \(x\), where \(x^T\) denotes the (row) vector which is the transpose of \(x\). Pick out the true statements:
26. Consider the matrix \(M=\begin{bmatrix}0 & 1 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 2 \\ 0 & 0 & 2 & 0\end{bmatrix}\). Then
27. Let \(f\) be a non-zero symmetric bilinear from on \(\mathbb{R}^3\). suppose that exist linear transformations \(T_i: \mathbb{R}^3 \rightarrow \mathbb{R}, i=1,2\) such that for all \(\alpha, \beta \in \mathbb{R}^3, f(\alpha, \beta)=T_1(\alpha) T_2(\beta)\).
28. Let \(A=\begin{bmatrix}1 & 1 \\ 1 & 0\end{bmatrix}\) and let \(\alpha_n\) and \(\beta_n\) denote the two eigenvalues of \(A^n\) such that \(\left|\alpha_n\right| \geq\left|\beta_n\right|\). Then
29. Let \(A\) be a \(n \times n\) real symmetric non-singular matrix. Suppose there exists \(r \in \mathbb{R}^n\) such that \(x^{\prime} A x<0\) Then we can conclude that
30. Let \(A=\begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}\). Let \(f: \mathbb{R}^2 \times \mathbb{R} \rightarrow \mathbb{R}\) be defined by \(f(v, w)=w^T\) Av Pick the correct statement form below:
31. The matrix
0 Comments