Practice Questions for NET JRF Linear Algebra : Vector Space and Subspaces - IV

Practice Questions for NET JRF Linear Algebra <br> Assignment: Vector Space and Subspaces

Practice Questions for NET JRF JRF Linear Algebra
Assignment: Vector Space and Subspaces

31. Which of the following is not a subspace of \(\mathbb{R}^{3}\)?





32. Let \(V\) denote the vector space \(C^{5}[a, b]\) over \(\mathbb{R}\) and \(W=\left\{f \in V: \frac{d^{4} f}{d t^{4}}+2 \frac{d^{2} f}{d t^{2}}-f=0\right\}\). Then





33. Let \(F_{3}\) be the field of 3 elements and let \(F_{3} \times F_{3}\) be the vector space over \(F_{3}\). The number of distinct linearly dependent sets of the form \(\{u, v\}\), where \(u, v \in F_{3} \times F_{3} /\{(0,0)\}\) and \(u \neq v\) is __.





34. Let \(M\) be the space of all \(4 \times 3\) matrices with entries in the finite field of three elements. Then the number of matrices of rank three in \(M\) is





35. The dimension of the vector space \(V=\left\{A=\left[a_{i j}\right]_{n \times n} \mid a_{i j} \in \mathbb{C}, a_{i j}=-a_{j i}\right\} \quad\) over field \(\mathbb{R}\) is





36. Consider the subspace

\(W=\{\left[a_{i j}\right]: a_{i j}=0\) if \(i\) is even \(\}\) of all \(10 \times 10\)

real matrices. Then the dimension of \(W\) is





37. Let \(M=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]\), where \(0<\theta<\frac{\pi}{2}\). Let \(V=\left\{u \in \mathbb{R}^{3}: M u^{t}=u^{t}\right\}\). Then the dimension of \(V\) is





38. Let \(A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 3 \\ x & y & z\end{array}\right]\) and let \(V=\left\{(x, y, z) \in \mathbb{R}^{3}: \operatorname{det}(A)=0\right\}\). Then the dimension of \(V\) equals





39. A basis of

\(V=\{(x, y, z, w) \in \mathbb{R}^{4}: x+y-z=0\), \(y+z+w=0,2 x+y-3 z-w=0\}\)





40. The dimension of the subspace \(\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right): 3 x_{1}-x_{2}+x_{3}=0\right\}\) of \(\mathbb{R}^{5}\) is





Post a Comment

0 Comments