41. Let \(V\) be the vector space of all real polynomials. Consider the subspace \(W\) spanned by \(t^{2}+t+2\), \(t^{2}+2 t+5\), \(5 t^{2}+3 t+4\), and \(2 t^{2}+2 t+4\). Then the dimension of \(W\) is
Explanation for Question 41 (c): Consider the matrix \(A\) of the coefficients of the given vectors: \[ A=\left[\begin{array}{lll} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 5 & 3 & 4 \\ 2 & 2 & 4 \end{array}\right] \] Note that \(\text{Rank}(A)=2\). One can use row echelon form to get the rank. \(\Rightarrow\) Out of the given 4 vectors, 2 are linearly independent. \(\Rightarrow\) The space generated by the 4 vectors is of dimension 2.
42. The set of all \(x \in \mathbb{R}\) for which the vectors \((1, x, 0)\), \((0, x^{2}, 1)\), and \((0,1, x)\) are linearly independent in \(\mathbb{R}^{3}\) is
Explanation for Question 42 (c): Consider the matrix \(A\): \[ A=\left[\begin{array}{lll} 1 & x & 0 \\ 0 & x^2 & 1 \\ 0 & 1 & x \end{array}\right] \] \((1, x, 0), (0, x^2, 1), (0, 1, x)\) are linearly independent if and only if \(|A| \neq 0\). \(|A|=x^3-1 \neq 0\) if and only if \(x \neq 1\).
43. Let \(S\) and \(T\) be two subspaces of \(\mathbb{R}^{24}\) such that \(\operatorname{dim}(S)=19\) and \(\operatorname{dim}(T)=17\). Then, the
Explanation for Question 43 (c): We know \(\operatorname{S+T} \subseteq \mathbb{R}^{14}\) and \[ \operatorname{dim}(S+T)=\operatorname{dim} S+\operatorname{dim} T-\operatorname{dim} (S \cap T) \] \[ \begin{aligned} & S+T \subseteq R^{14} \\ & \Rightarrow \operatorname{dim}(S+T) \leqslant 24 \\ & \Rightarrow 24 \geqslant 19+17-\operatorname{dim} (S \cap T) \\ & \Rightarrow \operatorname{dim}(S \cap T) \geqslant 12 \\ & \operatorname{dim}(S \cap T) \leqslant \operatorname{dim} T=17 \\ & \Rightarrow 17 \geqslant \operatorname{dim} S \cap T \geqslant 12 \\ & \Rightarrow 17 \geqslant \operatorname{dim} S+\operatorname{dim} T-\operatorname{dim}(S+T) \geqslant 12 \\ & \Rightarrow 19 \leqslant \operatorname{dim}(S+T) \leqslant 24 \end{aligned} \]
44. Let \(v_{1}=(1,2,0,3,0)\), \(v_{2}=(1,2,-1,-1,0)\), \(v_{3}=(0,0,1,4,0)\), \(v_{4}=(2,4,1,10,1)\), and \(v_{5}=(0,0,0,0,1)\). The dimension of the linear span of \(\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)\) is
Explanation for Question 44 (b): \(\operatorname{Rank} A=3\) where \[ A=\left[\begin{array}{ccccc} 1 & 2 & 0 & 3 & 0 \\ 1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 2 & 4 & 1 & 10 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right] \] Use row echelon form to determine the rank.
45. The set \(V=\left\{(x, y) \in \mathbb{R}^{2}: x y \geq 0\right\}\) is
Explanation for Question 45 (d): We check for vector addition first. Let \(v_1=(0,5)\) and \(v_2=(-5,0) \in V\). \(v_1=(0,5), v_2=(-5,0)\) but \(v_1+v_2=(-5,5) \notin V\).
46. Let \(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\) be a basis of \(\mathbb{R}^{4}\) and \(v=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}\) where \(a_{i} \in \mathbb{R}\), \(i=1,2,3,4\).
Then \(\left\{v_{1}-v, v_{2}-v, v_{3}-v, v_{4}-v\right\}\) is a basis of \(\mathbb{R}^{4}\) if and only if
Explanation for Question 46 : NA
47. The dimension of the vector space of all \(3 \times 3\) real symmetric matrices is
Explanation for Question 47 (c): The first row has 3 places of choice. The second row has 2 places of choice. The third row has 1 place of choice. \(\Rightarrow\) Total places for choice \(=3+2+1=6\).
48. Let \(W\) be the space spanned by \(f=\sin x\) and \(g=\cos x\). Then for any real value of \(\theta\), \(f_{1}=\sin (x+\theta)\) and \(g_{1}=\cos (x+\theta)\).
Explanation for Question 48 (abd): Consider the equations: \[ \begin{aligned} \sin (x+\theta) & =\sin x \cos \theta+\cos x \sin \theta \\ & =\alpha_1 \sin x+\beta \cos x \\ \cos (x+\theta) & =\cos x \cos \theta-\sin x \sin \theta \\ & =\beta \cos x-\alpha \sin x \end{aligned} \] \((\theta \in \mathbb{R}\) is fixed)\) \(\cos (x+\theta)=\cos x \cos \theta-\sin x \sin \theta\). \(\Rightarrow \sin (x+\theta)\) and \(\cos (x+\theta)\) are in \(W\) as they are linear combinations of \(f\) and \(g\). Also, we have \(\left|\begin{array}{cc}\alpha & \beta \\ \beta & -\alpha\end{array}\right|=-\alpha^2-\beta^2=-\left(\cos ^2 \theta+\sin ^2 \theta\right)=-1\). \(\Rightarrow \sin (x+\theta)\) and \(\cos (x+\theta)\) are linearly independent and form a basis for \(W\).
49. Let \(W\) be an \(m\)-dimensional subspace of an \(n\)-dimensional vector space \(V\), where \(m < n\). Then the dimension of \(V / W\) is
Explanation for Question 49 (b): One can use the second theorem on homomorphism to prove this.
50. Consider the set
Explanation for Question 50 (d): Consider the linear transformation \(T: \mathbb{R}^3 \rightarrow \mathbb{R}^2\) defined as \(T=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]\). Observe that \(V=\operatorname{Img}(T)\). \(\Rightarrow V\) is a subspace and \(\operatorname{Rank}(T)=2\). \(\Rightarrow \operatorname{dim}(V)=2\). \(V \subseteq \mathbb{R}^2\) of dimension 2, so \(V=\mathbb{R}^2\).
51. Which of the following subsets of \(\mathbb{R}^{4}\) is a basis of \(\mathbb{R}^{4}\) ? \begin{aligned} & B_{1}=\{(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)\} \\ & B_{2}=\{(1,0,0,0),(1,2,0,0),(1,2,3,0),(1,2,3,4)\} \\ & B_{3}=\{(1,2,0,0),(0,0,1,1),(2,1,0,0),(-5,5,0,0)\} \end{aligned}
Explanation for Question 51 (a): Let \(A_i\) be the matrix with rows as vectors of \(B_i\) for \(i=1,2,3\). \(\operatorname{Rank}\left(A_1\right)=4\), \(\operatorname{Rank}\left(A_2\right)=4\), \(\operatorname{Rank}\left(A_3\right)=3\). \(\Rightarrow B_1\) and \(B_2\) are a basis but not \(B_3\).
52. Which of the following sets of functions from \(\mathbb{R}\) to \(\mathbb{R}\) is a vector space over \(\mathbb{R}\)
Explanation for Question 52 (c): Let \(f, g \in S\), and \(\alpha, \beta \in \mathbb{R}\). Then \[ \begin{aligned} \lim _{x \rightarrow 3}(\alpha f+\beta g)(x) & = \alpha \lim _{x \rightarrow 3} f(x) + \beta \lim _{x \rightarrow 3} g(x) \\ & = \alpha \cdot 0 + \beta \cdot 0 = 0 \end{aligned} \] \(\therefore \quad \alpha f+\beta g \in S_1\). Similarly, \(S_3\) is a vector space because if \(f, g \in S_3, \alpha, \beta \in \mathbb{R}\), then \[ \lim _{x \rightarrow 3}(\alpha f+\beta g) = \alpha \lim _{x \rightarrow 3} f(x) + \beta \lim _{x \rightarrow 3} g(x) \] exists. \(S_2\) is not a vector space since the zero function does not belong to \(S_2\), and if \(f, g \in S_2\), then \[ \lim _{x \rightarrow 3}(f+g)(x) = \lim _{x \rightarrow 3} f(x) + \lim _{x \rightarrow 3} g(x) = 1 + 1 = 2 \] \(\therefore \quad f+g \notin S_2\).
53. Let \(M_{n}\) denote the vector space of all \(n \times n\) real matrices.
Among the following subsets of \(M_{n}\) decide which are linear subspaces.
Explanation for Question 53 (cd): Let \(M_n\) be the vector space of all \(n \times n\) real matrices. \(V_1=\left\{A \in M_n: A\right.\) is non-singular \(\}\) is not a subspace. Since \(0 \in V_1\). \(V_2=\left\{A \in M_n: \operatorname{det}(A)=0\right\}\) is not a subspace. Since \(\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)\). Hence, vector addition fails. \(V_3=\left\{A \in M_n: \operatorname{Trace}(A)=0\right\}\) is a subspace. \(\because \quad 0 \in V_3\) and \(\operatorname{Tr}(\alpha A+\beta B)=\operatorname{Tr}(\alpha A)+T(\beta B)\) \(=\alpha \operatorname{Tr}(A)+\beta \operatorname{Tr}(B)=0\) where \(\alpha, \beta \in F\). We can easily verify that \(V_4=\left\{B A: A \in M_n\right\}\) where \(B\) is some fixed matrix in \(M_n\) also forms a subspace.
54. Let \(W_{1}, W_{2}, W_{3}\) be three distinct subspaces of \(\mathbb{R}^{10}\) such that each \(W_{i}\) has dimension 9. Let \(W=W_{1} \cap W_{2} \cap W_{3}\). Then we can conclude that
Explanation for Question 54 (bc): \(\because \quad\) Intersection of subspaces is also a subspace. Hence, option (a) is incorrect. Since each \(W_i\)'s are distinct and \(\operatorname{dim}\left(W_i\right)=9\). Hence, L.I. constraint is imposed on each \(W_i\). \(W_1, W_2, W_3<\mathbb{R}^{10}: \operatorname{dim} W_i=9\). \(W=W_1 \cap W_2 \cap W_3\). Number of L.I. constraints imposed on \(W=W_1 \cap W_2 \cap W_3\) is 3. Hence, \(\operatorname{dim}(W)=10-3=7\).
55. Let \(x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}\) be linearly independent. Let \(\delta_{1}=x_{2} y_{3}-y_{2} x_{3}, \delta_{2}=x_{1} y_{3}-y_{1} x_{3}, \delta_{3}=x_{1} y_{2}-y_{1} x_{2}\). If \(V\) is the span of \(x, y\), then
Explanation for Question 55 (a): Given \(x=\left(x_1, x_2, x_3\right)\) and \(y=\left(y_1, y_2, y_3\right)\) are linearly independent. That is if \((u, v, w) \in V\) where \(V\) is the span of \(x\) and \(y\), then \[ \left|\begin{array}{lll} u & v & w \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array}\right|=0 \] \(u(x_2 y_3-y_2 x_3)-v(x_1 y_3-y_1 x_3)+w(x_1 y_2-y_1 x_2)=0\). ie \(u \delta_1-v \delta_2+w \delta_3=0\).
0 Comments