Practice Questions for CSIR NET Complex Analysis : Analytic Functions III

Practice Questions for NET JRF Complex Analysis Assignment: Analytic Functions

21. Let \(u(x, y)=2 x(1-y)\) for all real \(x\) and \(y\). Then a function \(v(x, y)\), so that \(f(z)=u(x, y)+i v(x, y)\) is analytic, is






22. Define \(f: \mathbb{C} \rightarrow \mathbb{C}\) by \(f(z)=\left\{\begin{array}{cc}0 & \text { if } \operatorname{Re}(z)=0 \text { or } \operatorname{Im}(z)=0 \\ z & \text { otherwise }\end{array}\right.\) then the set of points where \(f\) is analytic is






23. Which of the following is not the real part of an analytic function?






24. The principal value of \(\log \left(i^{1 / 4}\right)\) is






25. Consider the functions \(f(z)=x^{2}+i y^{2}\) and \(g(z)=x^{2}+y^{2}+i x y\) at \(z=0\)






26. Consider a function \(f(z)=u+i v\) defined on \(|z-i| < 1\) where \(u, v\) are real-valued functions of \(x, y\). If \(f(z)\) is analytic then \(u\) equals to






27. At \(z=0\), the function \(f(z)=z^{2} \bar{z}\)






28. The function \(\sin z\) is analytic in






29. The function \(f(z)=|z|^{2}\) is






30. An analytic function \(f(z)\) is such that \(\operatorname{Re}\left\{f^{\prime}(z)\right\}=2 y\) and \(f(1+i)=2\), then the imaginary part of \(f(z)\) is






31. The function \(f(z)=\left\{\begin{array}{cc}\frac{(\bar{z})^{2}}{z^{2}} & \text { when } z \neq 0 \\ 0 & \text { when } z=0\end{array}\right.\)






32. The harmonic conjugate of \(u(x, y)=x^{2}-y^{2}+x y\) is






33. Let \(f: \mathbb{C} \rightarrow \mathbb{C}\) be given by

\(f(z)=\left\{\begin{array}{cc}\frac{(\bar{z})^{2}}{z} & \text { when } z \neq 0 \\ 0 & \text { when } z=0\end{array}\right.\)






34. How many elements does the set \(\left\{z \in \mathbb{C} \mid z^{60}=-1, z^{k} \neq-1\right.\) for \(0






Post a Comment

0 Comments