1. For \(z \in \mathbb{C}\), define \(f(z)=\frac{e^{z}}{e^{z}-1}\). Then,
2. Let \(f(z)=\frac{z-1}{\exp \left(\frac{2 \pi i}{z}\right)-1}\). Then,
3. For the function \(f(z)=\sin \left(\frac{1}{\cos (1 / z)}\right)\), the point \(z=0\) is
4. An example of a function with a non-isolated essential singularity at \(z=2\) is
5. For the function \(f(z)=\sin \left(\frac{1}{z}\right), z=0\) is a
6. If \(f(z)=z^{3}\) then it
7. Let \(f(z)=\frac{e^{\frac{c}{(z-a)}}}{e^{\frac{z}{a}}-1}\).
8. Let \(f\) be an entire function on \(\mathbb{C}\). Let \(g(z)=\overline{f(\bar{z})}\).
9. Which of the following is incorrect about \(f\) where \(f(z)=\frac{z \cos (\pi z / 2 a)}{(z-a)\left(z^{2}+b^{2}\right)^{7} \sin ^{5} z}\)
10. Let \(u(x, y)\) be the real part of an entire function \(f(z)=u(x, y)+i v(x, y)\) for \(z=x+i y \in \mathbb{C}\). If \(C\) is the positively oriented boundary of a rectangular region \(R\) in \(\mathbb{R}^{2}\), then \(\oint_{C}\left[\frac{\partial u}{\partial y} d x-\frac{\partial u}{\partial x} d y\right]=\)
0 Comments