Practice Questions for NET JRF Real Analysis Assignment: Differentiability

Practice Questions for NET JRF Real Analysis Assignment: Differentiability

1. The value of \(\lim _{x \rightarrow 0} \frac{1}{x} \int_{x}^{2 x} e^{-t^{2}} d t\)





2. Let \(f\) be a bounded function on \(\mathbb{R}\) and \(\begin{array}{lll}a \in \mathbb{R} . \quad \text { For } & \delta>0, \quad \text { let } \\ \omega(a, \delta)=\sup |f(x)-f(a)|, & x \in[a-\delta, a+\delta] .\end{array}\) Then





3. Let \(f\) be a continuously differentiable function on \(\mathbb{R}\). Suppose that \(L=\lim _{x \rightarrow \infty}\left(f(x)+f^{\prime}(x)\right)\) exists. If \(0






4. Let \(A \subseteq \mathbb{R}\) and \(f: A \rightarrow \mathbb{R}\) be given by \(f(x)=x^{2}\). Then \(f\) is uniformly continuous if






5. Let \(P(x)=\left(\frac{5}{13}\right)^{x}+\left(\frac{12}{13}\right)^{x}-1\) for all \(x \in \mathbb{R}\). Then which of the following statement(s) is(are) TRUE?






6. The function \(f: \mathbb{R} \rightarrow \mathbb{R}\) is given by \(f(x)=e^{|x|+x^{2}}+\left|x^{2}-1\right|\) Which of the following is true about the function \(f\) ?






7. The function \(f(x)=a_{0}+a_{1}|x|+a_{2}|x|^{2}+a_{3}|x|^{3}\) is differentiable at \(x=0\)






8. Suppose \(f: \mathbb{R} \rightarrow \mathbb{R}\) is a function that satisfies \(|f(x)-f(y)| \leq|x-y|^{\beta}, \beta>0\). Which of the following is correct?






9. Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a continuous function with period \(\rho>0\). Then \(g(x)=\int_{x}^{x+\rho} f(t) dt\) is a






10. Let \(A\) be the set of rational numbers in the open interval \((0,7)\) and \(f: A \rightarrow \mathbb{R}\) be a uniformly continuous function. Which of the following are true?






11. Let \(f\) be a twice differentiable function on \(\mathbb{R}\). Given that \(f''(x)>0\) for all \(x \in \mathbb{R}\),






12. Suppose \(f: \mathbb{R} \rightarrow \mathbb{R}\) is a differentiable function. Then which of the following statements are necessarily true?






13. Let \(f(x)=\sin x-x+\frac{x^{3}}{3!}\) and \(g(x)=\cos x-1+\frac{x^{2}}{2!}\) for \(x \in \mathbb{R}\). Which of the following statements are correct?






14. Let \(I=[0,1] \subset \mathbb{R}\). For \(x \in \mathbb{R}\), let \(\varphi(x)=\operatorname{dist}(x, I)=\inf \{|x-y|: y \in I\}\). Then






15. Consider the function \(f(x)=\cos (|x-5|)+\sin (|x-3|)+|x+10|^{3}-(|x|+4)^{2}\) At which of the following points is \(f\) not differentiable?






16. Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) by \(f(x)=\begin{cases} x^{2} & \text { if } x<0, \\ 2x+x^{2} & \text { if } x \geq 0 \end{cases}\) Then which of the following statements are correct?






17. Consider the function \(f(x)=|\cos x|+|\sin (2-x)|\) At which of the following points is \(f\) not differentiable?






18. Let

\(F=\left\{f: \mathbf{R} \rightarrow \mathbf{R}:|f(x)-f(y)| \leq K|(x-y)|^{\alpha}\right\}\)

For all \(x, y \in \mathbf{R}\) and for some \(\alpha>0\) and some \(K>0\). Which of the following is/are true?






19. Let \(f(x)=x^{2} \sin \frac{1}{x^{2}}\), and \(f(0)=0\) for \(x \neq 0\)






20. Let \(f:(0,1) \rightarrow \mathbb{R}\) be continuous. Suppose that

\(|f(x)-f(y)| \leq |\cos x-\cos y|\) for all \(x, y \in (0,1)\)

Then






21. The function \(f(x)=|x|+3\) is






22. Let \(f(x)=|\sin \pi x|\), \(x \in \mathbb{R}\). Then






23. The function \(f(x)=1-|1-x|\) on \(\mathbb{R}\) is






24. \(f:[0,1] \rightarrow \mathbb{R}\) is a function. Which of the following is possible?






25. Let \(f:\mathbb{R} \rightarrow \mathbb{R}\) be differentiable. Which of these will follow from the mean value theorem?


26. The function \(f(x)=\left\{\begin{array}{cc}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.\) is






27. The set of points where \(f(x)=|\sin x|\) is not differentiable is






28. Let \(f:(0,2) \rightarrow \mathbb{R}\) be defined by \(f(x)=\left\{\begin{array}{cc}x^{2} & \text { If } x \text { is rational } \\ 2 x-1 & \text { If } x \text { is irrational }\end{array}\right.\) Then






29. \(f:\mathbb{R} \rightarrow \mathbb{R}\) is such that \(f(0)=0\) and \(\left|\frac{d f}{d x}(x)\right| \leq 5\) for all \(x\). We can conclude that \(f(1)\) is in






30. Let \(f:\mathbb{R} \rightarrow \mathbb{R}\) be a differentiable function such that \(\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| < \infty\). Then






31. Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a twice continuously differentiable function, with \(f(0)=f(1)=f^{\prime}(0)=0\). Then






32. Let \(f:[0, \infty) \rightarrow [0, \infty)\) be a continuous function. Which of the following is correct?






33. Take the closed interval \([0,1]\) and open interval \((1 / 3,2 / 3)\). Let \(K=[0,1] \backslash (1 / 3,2 / 3)\). For \(x \in [0,1]\) define \(f(x)=d(x, K)\) where \(f(x)=d(x, K)=\inf \{\mid x-y \| y \in K\}\). Then






34. Let \(X=(0,1) \cup (2,3)\) be an open set in \(\mathbb{R}\). Let \(f\) be a continuous function on \(X\) such that the derivative \(f^{\prime}(x)=0\) for all \(x\). Then the range of \(f\) has






35. If \(f(x)\) is a real-valued function defined on \([0, \infty]\) such that \(f(0)=0\) and \(f^{\prime \prime}(x)>0\) for all \(x\), then the function \(h(x)=\frac{f(x)}{x}\) is






36. Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a continuous function and \(f(x+1)=f(x)\) for all \(x \in \mathbb{R}\). Then






37. Decide which of the following functions are uniformly continuous on \((0,1)\).






38. Which of the following statements is (are) true on the interval \(\left(0, \frac{\pi}{2}\right)\)?






39. Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a differentiable function with \(f(0)=0\). If for all \(x \in \mathbb{R}\), \(1






40. Let \(f(x)=\frac{1}{1+|x|}+\frac{1}{1+|x-1|}\) for all \(x \in [-1,1]\). Then which one of the following is TRUE?






41. Let \(f(x)=\left\{\begin{array}{cl}\frac{\sin x}{x} & \text{ if } x \neq 0 \\ 1 & \text{ if } x=0\end{array}\right.\). Then






Post a Comment

0 Comments