Practice Questions for CSIR NET Real Analysis : Uniform Convergence

Practice Questions for NET JRF Real Analysis Assignment: Uniform Convergence

1. For \(n \geq 1\), let \(g_n(x)=\sin ^2\left(x+\frac{1}{n}\right), x \in[0, \infty)\) and \(f_n(x)=\int_0^x g_n(t) d t\). Then






2. Let \(\left\{b_n\right\}\) and \(\left\{c_n\right\}\) be a sequence of real numbers then a necessary and sufficient condition for the sequence of polynomials \(f_n(x)=b_n x+c_n x^2\) to converge uniformly to 0 on the real line is






3. Let \(\left\{f_n\right\}\) be a sequence of continuous functions on \(\mathbb{R}\).






4. Let \(P_n(x)=a_n x^2+b_n x+c_n\) be a sequence of quadratic polynomials where \(a_n, b_n, c_n \in \mathbb{R}\) for all \(n \geq 1\). Let \(\lambda_0, \lambda_1, \lambda_2\) be distinct real numbers such that \(\lim _{n \rightarrow \infty} P_n\left(\lambda_0\right)=A_0\), \(\lim _{n \rightarrow \infty} P_n\left(\lambda_1\right)=A_1\), and \(\lim _{n \rightarrow \infty} P_n\left(\lambda_2\right)=A_2\). Then






5. Let \(f_n:[1,2] \rightarrow[0,1]\) be given by \(f_n(x)=(2-x)^n\) for all non-negative integers \(n\). Let \(f(x)=\lim _{n \rightarrow \infty} f_n(x)\) for \(1 \leq x \leq 2\). Then which of the following is true?






6. Let \(f_n(x)=\left\{\begin{array}{cc}1-n x & \text { for } x \in\left[0, \frac{1}{n}\right] \\ 0 & \text { for } x \in\left[\frac{1}{n}, 1\right]\end{array}\right.\) Then






7. Let \(f_n(x)=x^{1/n}\) for \(n \in[0,1]\). Then






8. Let \(f(x)=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^2}\). Then






9. The series \(\sum_{m=1}^{\infty} x^{\ln m}\), \(x>0\), is convergent on the interval






10. Let \(f_n(x)=\frac{x}{\{(n-1) x+1\}\{n x+1\}}\) and






11. Let \(\left\{f_n\right\}\) be a sequence of real-valued differentiable function on \([a, b]\) such that \((-1,1)\) \(f_n(x) \rightarrow f(x)\) as \(n \rightarrow \infty\) for every \(x \in [a, b]\) and for some Riemann-integrable function \(f:[a, b] \rightarrow \mathbb{R}\). Consider the statements:

\(P_1:\left\{f_n\right\}\) converges uniformly

\(P_2:\left\{f_n^{\prime}\right\}\) converges uniformly

\(P_3: \int_a^b f_n(x) d x \rightarrow \int_a^b f(x) d x\)

\(P_4: f\) is differentiable

Then which one of the following need NOT be true






12. Let \(f_n(x)=\frac{x^n}{1+x}\) and \(g_n(x)=\frac{x^n}{1+n x}\) for \(x \in \mathbb{N}\). Then on the interval \([0,1]\),






13. Which of the following sequences \(\left\{f_n\right\}_{n=1}^{\infty}\) of functions does NOT converge uniformly on \([0,1]\)?






14. Which one of the following statements holds?






15. Consider two sequences \(\left\{f_n\right\}\) and \(\left\{g_n\right\}\) of functions where \(f_n:[0,1] \rightarrow \mathbb{R}\) and \(g_n: \mathbb{R} \rightarrow \mathbb{R}\) are defined by \(f_n(x)=x^n\) and \(g_n(x)=\left\{\begin{array}{ccc}\cos \left(\frac{x-n \pi}{2}\right) & \text{If} & x \in [n-1, n+1] \\ 0 & \text{otherwise}\end{array}\right.\) Then






16. Let \(f_n(x)=\frac{\sin x}{\sqrt{n}}\), \(n=1,2, \ldots\), and \(x \in [-1,1]\). Choose incorrect






17. Find out which of the following series converge uniformly for \(x \in (-\pi, \pi)\).






18. Let \(f_n(x)=(-x)^n\), \(x \in [0,1]\). Then decide which of the following are true.






19. Consider all sequences \(\left\{f_n\right\}\) of real-valued continuous functions on \([0, \infty)\). Identify which of the following statements are correct.






20. Which one of the following statements is true for the sequence of functions \(f_n(x)=\frac{1}{n^2+x^2}\), \(n=1,2, \cdots\), \(x \in [1/2,1]\)?






21. Consider the power series \(f(x)=\sum_{n=2}^{\infty} \log (n) x^n\). The radius of convergence of the series \(f(x)\) is






22. For \(n \geq 1\), let \(f_n(x)=x e^{-n x^2}\), \(x \in \mathbb{R}\). Then the sequence \(\left\{f_n\right\}\) is






23. Let \(f_n(x)=\frac{1}{1+n^2 x^2}\) for \(n \in \mathbb{N}\), \(x \in \mathbb{R}\). Which of the following are true?






Post a Comment

0 Comments