1. Let \(A=\left\{(x, y) \in \mathbb{R}^2: x+y \neq-1\right\}\). Define \(f: A \rightarrow \mathbb{R}^2\) by \(f(x, y)=\left(\frac{x}{1+x+y}, \frac{y}{1+x+y}\right)\). Then,
2. Define \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) by \(f(x, y)=\left(x+2y+y^2+|xy|, 2x+y+x^2+|xy|\right)\) for \((x, y) \in \mathbb{R}^2\). Then,
3. Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) be given by \(f(x, y)=(x+y, xy)\). Then,
4. Let \(f: \mathbb{R}^n \rightarrow \mathbb{R}^n\) be a differential function. Let \(D f(x)\) be the derivative of \(f\) at \(x \in \mathbb{R}^n\). Which of the following is/are correct?
5. If \(f: S \rightarrow S\) is a function, then we denote by \(f^k\), the function \(f \circ f \circ \cdots \circ f\) (\(k\) times). Let \(f_1\) and \(f_2\) be two functions defined on \(\mathbb{R}^2\) as follows:
\(f_1(x, y) = (x+1, y+3), f_2(x, y) = (x-3, y-2)\). Then
6. Let \(f: \mathbb{R}^n \rightarrow \mathbb{R}\) be the map \(f\left(x_1, \ldots, x_n\right)=a_1 x_1+\ldots+a_n x_n\), where \(a=\left(a_1, \ldots, a_n\right)\) is a fixed non-zero vector. Let \(D f(0)\) denote the derivative of \(f\) at 0. Which of the following are correct?
7. Let \(f(x, y)=\sqrt{|xy|}\). Then,
8. Let \(z=x+iy\) and \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) be the function \(f(x, y)=z^2=\left(x^2-y^2, 2xy\right) \in \mathbb{R}^2\). Let \((D f)(a)\) denote the derivative of \(f\) at \(a\). Which of the following are true?
9. Let \(f: \mathbb{R}^n \rightarrow \mathbb{R}^n\) be the function defined by \(f(x)=x \|\left. x\right|^2\) for \(x \in \mathbb{R}^n\). Which of the following statements are correct?
10. Let \(f: A \cup E \rightarrow \mathbb{R}^2\) be differentiable, where \(A=\left\{(x, y) \in \mathbb{R}^2: \frac{1}{2} (a.) If \((D f)(x, y)=0\) for all \((x, y) \in A \cup E\), then \(f\) is constant (b.) If \((D f)(x, y)=0\) for all \((x, y) \in A\), then \(f\) is constant on \(A\) (c.) If \((D f)(x, y)=0\) for all \((x, y) \in E\), then \(f\) is constant on \(E\) (d.) If \((D f)(x, y)=0\) for all \((x, y) \in A \cup E\), then for some \((x_0, y_0),(x_1, y_1) \in \mathbf{R}^2\), \(f(x, y)=(x_0, y_0)\) for all \((x, y) \in A\) and \(f(x, y)=(x_1, y_1)\) for all \((x, y) \in E\) Submit
11. Let \(L: \mathbf{R}^* \rightarrow \mathbf{R}\) be the function \(L(x)=\langle x, y\rangle\), where \(\langle\cdot, \cdot\rangle\) is some inner product on \(\mathbb{R}^*\) and \(y\) is a fixed vector in \(\mathbb{R}^*\). Further denote by \(D L\), the derivative of \(L\). Which of the following are necessarily correct?
12. Let \(f:[\pi, 2 \pi] \rightarrow \mathbb{R}^2\) be the function \(f(t)=(\cos t, \sin t)\). Which of the following are necessarily correct?
13. Consider the map \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) defined by \(f(x, y)=\left(7 x+x^4, 3 x+4 y+y^4\right)\). Then,
14. The map \(L: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) given \(L(x, y)=(x,-y)\) is
15. Consider the map \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) defined by \(f(x, y)=\left(3 x-2 y+x^2, 4 x+5 y+y^2\right)\). Then
16. Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R}\) and \(g: \mathbb{R}^2 \rightarrow \mathbb{R}\) be defined by \(f(x, y)=|x|+|y|\) and \(g(x, y)=|x y|\). Then
17. Let
\(f(x, y)= \begin{cases}\frac{x y}{\left(x^2+y^2\right)^{3 / 2}}\left[1-\cos \left(x^2+y^2\right)\right], & (x, y) \neq(0,0) \\ k, & (x, y)=(0,0)\end{cases}\)
Then the value of \(k\) for which \(f(x, y)\) is continuous at \((0,0)\) is
18. For \((x, y) \in \mathbb{R}^2\), \(f(x, y)= \begin{cases}\frac{2 x y}{x^2+y^2}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}\) Then
19. Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) be defined by \(f(x, y)=\left\{\begin{array}{cc}x^2+y^2 & \text { If } \mathrm{x} \text { and } \mathrm{y} \text { are rational } \\ 0 & \text { Otherwise }\end{array}\right.\) Then
20. If \(f(x, y)=\left\{\begin{array}{cc}\frac{x^3}{x^2+y^2}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{array}\right.\), then at \((0,0)\)
21. Let
\(f(x, y)=\frac{x y}{\left(x^2+y^2\right)^{3 / 2}}\left[1-\cos \left(x^2+y^2\right)\right], \quad (x, y) \neq(0,0)\)
\(f(x, y)=k, \quad (x, y)=(0,0)\)
22. Consider the function \(f(x, y)=\frac{x^2}{y^2}, \quad (x, y) \in\left[\frac{1}{2}, \frac{3}{2}\right] \times\left[\frac{1}{2}, \frac{3}{2}\right]\). The derivative of the function at \((1,1)\) along the direction \((1,1)\)
23. Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) be the function \(f(r, \theta)=(r \cos \theta, r \sin \theta)\). Then for which of the open subsets \(U\) of \(\mathbb{R}^2\) given below, \(f\) restricted to \(U\) admits an inverse?
24. Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) be given by \(f(x, y)=\left(x^2, y^2+\sin x\right)\). Then the derivative of \(f\) at \((x, y)\) is the linear transformation given by
25. A function \(f: \mathbb{R}^2 \rightarrow \mathbb{R}\) is defined by \(f(x, y)=x y\). Let \(v=(1,2)\) and \(a=\left(a_1, a_2\right)\) be two elements of \(\mathbb{R}^2\). The directional derivative of \(f\) in the direction of \(v\) at \(a\) is
26. A function \(f(x, y)\) on \(\mathbb{R}^2\) has the following partial derivatives
\(\frac{\partial f}{\partial x}(x, y)=x^2, \quad \frac{\partial f}{\partial y}(x, y)=y^2\)
Then
27. Suppose that \(f: \mathbb{R}^* \rightarrow \mathbb{R}\) is given by \(f(\underline{x})=a_1 x_1^2+a_2 x_2^2+\cdots+a_n x_n^2\), where \(\underline{x}=\left(x_1, x_2, \ldots, x_n\right)\) and at least one \(a_j\) is not zero. Then we can conclude that
28. Let \(S\) be the set of \((\alpha, \beta) \in \mathbb{R}^2\) such that \(\frac{x^a y^b}{\sqrt{x^2+y^2}} \rightarrow 0\) as \((x, y) \rightarrow(0,0)\)
Then \(S\) is contained in
29. Let \(f(x, y)=\frac{1-\cos (x+y)}{x^2+y^2}\) if \((x, y) \neq(0,0)\), \(f(0,0)=\frac{1}{2}\) and \(g(x, y)=\frac{1-\cos (x+y)}{(x+y)}\) if \(x+y \neq 0\), \(g(x, y)=\frac{1}{2}\) if \(x+y=0\) then
30. Let \(f: \mathbb{R}^4 \rightarrow \mathbb{R}\) be a function defined by \(f(x)=x^t A x\), where \(A\) is a \(4 \times 4\) matrix with real entries and \(x^t\) denotes the transpose of \(x\). The gradient of \(f\) at a point \(x_0\) necessarily is
31. Let \(f: \mathbb{R}^n \rightarrow \mathbb{R}^n\) be a continuously differentiable map satisfying \(\|f(x)-f(y)\| \geq\|x-y\|\), for \(x, y \in \mathbb{R}^n\). Then
32. Let \(A\) be a connected open subset of \(\mathbb{R}^2\). The number of continuous surjective functions from \(\bar{A}\) (the closure of \(A\) in \(\mathbb{R}^2\) ) to \(\mathbb{Q}\) is:
0 Comments