1. If \(x, y\) and \(z\) are elements of a group such that \(x y z=1\), then
Explanation for Question 1: \(x y z =1\) \(\Rightarrow y z =x^{-1} \cdot 1=x^{-1}\) \(\Rightarrow y zx =x^{-1} x=1\)(thus option a is true). \(\Rightarrow z x=y^{-1} \cdot 1\) \(\Rightarrow z x y=y^{-1} y=1\) which implies option c is also true. Note that b and d requires commutative property.
2. Which of the following is a subgroup of \((\mathbb{C},+)\)?
Explanation for Question 2: Let \(a, b \in(\mathbb{R},+)\), then \(a^{-1}=-a \in \mathbb{R}\). Also, \(a^{-1}*b=-a+b \in \mathbb{R}\). \(\Rightarrow(\mathbb{R}, +)\) is a group and is a subset of \((\mathbb{C}, +)\). \(\Rightarrow(\mathbb{R},+)\) is a subgroup of \((\mathbb{C},+)\). Let \(G_{1}=\{\pi \cdot r / r \in Q\}\). Let \(\pi \cdot r, \pi \cdot s \in G_{1} \Rightarrow(\pi.r)^{-1}=-\pi \cdot r \in G_{1}\), \(-\pi r+\pi.s \in G_{1}\). \(\Rightarrow G_{1}\) is subgroup. Let \(G_{2}=\{i \cdot r / r \in \mathbb{R}\}\). \(-i \cdot r+i \cdot s=i(-r+s) \in G_{2}\). \(\Rightarrow G_{2}\) is a subgroup. Let \(G_{3}=\left\{\pi^{n} / n \in \mathbb{Z}\right\}\). Let \(\pi \in G_{3}\), but \(\pi+\pi=2 \pi \notin G_{3}\). \(\Rightarrow G_{3}\) is not a subgroup. One can argue that \(G_{3}=\left\{\pi^{n} / n \in \mathbb{Z}\right\}=\{n \pi / n \in \mathbb{Z}\}\), in that case it is a gorup.
3. The value of \(\alpha\) for which \(G=\{\alpha, 1,3,9,19,27\}\) is a cyclic group under multiplication modulo 56 is
Explanation for Question 3: \(G=\{\alpha, 1,3,9,19,27\}\) is a group under \((\bmod 56)\). However, \(5 \times 3 \equiv 15(\bmod 56)\), \(15 \times 3 \equiv 45(\bmod 56)\), and \(35 \times 3=49(\mathrm{mod} 56)\) make \(a, b,\) and \(d\) false.
4. Let \(U(n)\) be the set of all positive integers less than \(n\) and relatively prime to \(n\). Then \(U(n)\) is a group under multiplication modulo \(n\). For \(n=248\), the number of elements in \(U(n)\) is
Explanation for Question 4: \(|U(n)|=\phi(n)\). \(\Rightarrow|U(248)|=\phi(248)=\phi\left(2^{3}\right) \times \phi(31)=4 \times 30=120\).
5. Let \(Q^c\) be the set of irrational real numbers and let \(G=Q^c \cup\{0\}\). Then, under the usual addition of real numbers, \(G\) is
Explanation for Question 5: Let \(a = \pi + 2 \quad \& b=\pi\). \(\Rightarrow a b^{-1}=a-b \notin G\). \(\Rightarrow(G,+)\) is not a group as addition is not binary operation.
6. Let \(G\) be a group such that \(a^2=e\) for each \(a \in G\), where \(e\) is the identity element of \(G\). Then
Explanation for Question 6: Let \(a, b \in G\) be a group.\) \(\Rightarrow a \cdot b \in G\). \(\forall a \in G, a^{2}=e\). \(\Rightarrow(a b)^{2}=e\). \(\Rightarrow(a b)^{-1}=a b\). \(\Rightarrow b^{-1} a^{-1}=a b\). \(\Rightarrow b a=a b\left(\because b^{2}=e \Rightarrow b^{-1}=b\right)\). \(\Rightarrow G\) is abelian group. For \(G=K_{4}\), \(G\) is not cyclic.
7. In the group \(\{1,2, \ldots ., 16\}\) under the operation of multiplication modulo 17, the order of the element 3 is
Explanation for Question 7: left as an exercise.
8. Let \(G\) be a finite abelian group of order \(n\) with identity \(e\). If for all \(a \in G, a^3=e\), then, by induction on \(n\), show that \(n=3^k\) for some non-negative integer \(k\).
Explanation for Question 8: left as an exercise.
9. Let \(G=\{a \in \mathbb{R}: a>0, a \neq 1\}\), define \(a * b=a^{\log b}\) then
Explanation for Question 9: \(G=\left\{a \in \mathbb{R} / a>0, a \neq 1\right\}\). \(a*b=a^{\log ^{b}} \in \mathbb{R}\). \(b>0 \Rightarrow \log b \in \mathbb{R}\). \(\log b \in \mathbb{R} \& \ a>0 \Rightarrow a^{\log b}>0\). If \(a^{\log b}=1 \Rightarrow \log b=0\) which is contradiction as \(b \neq 1\). \(\Rightarrow G\) is closed. \( \begin{aligned} & a *(b * c)=a *\left(b^{\log c}\right)=a^{\log b^{\log c}}=a^{\log c . \log b} \\ & (a * b) * c=(a * b)^{\log c}=\left(a^{\log b})^{\log c}=a^{\log b \cdot \log c}\right. \\ & \Rightarrow * \text { is associative } \end{aligned}\) \( \begin{aligned} & e * a=a=a*e \quad \because \log e=1\ \& \ e^{\log x}=x \\ & G \text { has identity } \end{aligned} \) If \(b=a^{-1}\) then \(a^{\log b}=e\). \(\Rightarrow \log a^{\log b}=1\). \(\Rightarrow \log b \log a=1\). \(\Rightarrow \log b=\frac{1}{\log a}\). \(\Rightarrow b=e^{\frac{1}{\log a}} \in G\). \(\Rightarrow \forall a \in G \exists a^{-1} \in G\) such that \(a*a^{-1}=e\). Also \(a^{\log b}\) equal to \(b^{\log a}\), thus G is abelian group.
10. The set of real numbers is a group with respect to
Explanation for Question 10: a) \((a-b)-c \neq a-(b -c)\) - not a group b) zero does not have inverse - not a group c) not well defined binary operaiton as \((a \div 0)\) is not defined. Also \((a \div b) \div c\) and \(a \div(b \div c)\) differ - not a group d) \(\Rightarrow a o b=a+b+1\in \mathbb{R}\), imples G is closed, Showing associativity is trivial. Let \(e\) be the identity. \(\Rightarrow a+e+1=a \Rightarrow e=-1\). If \(b=a^{-1}\), then \(a+b+1=-1 \Rightarrow b=-a-2\in \mathbb{R} \). \(\Rightarrow (G, o)\) is a group.
11. Let \(G\) be a group and let \(a \in G\). If \(o(a)=n\) and \(k\) is any integer, then which one of the following is correct?
12. Assertion (A): Let \(G=\mathbb{N} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}\), where \(\mathbb{N}\) is the set of all positive integers. The \(G\) is a group with respect to the usual multiplication.Reason (R): Multiplication in both \(\mathbb{N}\) and \(\left\{\frac{1}{n}: n \in \mathbb{N}\right\}\) is well-defined and associative.\(l \in G\) and \(a \in G \Rightarrow \frac{1}{a} \in G\)
13. Consider the following statements in respect of a finite group \(G\):1. \(O(a)=O\left(a^{-1}\right)\) for all \(a \in G\)2. \(O(a)=O\left(b a b^{-1}\right)\) for all \(a, b \in G\)
14. In the set \(Q\) of rational numbers defined * as follows: for \(\alpha, \beta \in \mathbb{Q}, \alpha \beta=\frac{\alpha \cdot \beta}{3}\). If \(\mathbb{Q}^+\), \(\mathbb {Q}^{-}, \mathbb{Q}^*\) respectively denote the sets of positive, negative and non-zero rational numbers, then which one of the following pairs is an abelian group?
15. Let \(M(\mathbb{R})\) be set of all matrices with real entries. The usual matrix addition '+' is
0 Comments