1. Let \(D=\{z \in \mathbb{C}:|z|<1\}\). Then there exists a holomorphic function \(f: D \rightarrow \bar{D}\) with \(f(0)=0\) with the property
2. Let \(f(z)=\frac{1+z}{1-z}\). Which of the following is/are true?
3. Let \(\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}\). Which of the following are correct?
4. The minimum possible value of \(|z|^{2}+|z-3|^{2}+|z-6 i|^{2}\), where \(z\) is a complex number and \(i=\sqrt{-1}\), is
5. Let \(f: \mathbb{D} \rightarrow \mathbb{D}\) be a holomorphic function with \(f(0)=0\), where \(\mathbb{D}\) is the open unit disc \(\{z \in \mathbb{C}:|z|<1\}\). Then
6. Let \(f(z)=z+\frac{1}{z}\) for \(z \in \mathbb{C}\) with \(z \neq 0\). Which of the following are always true?
7. Let \(f: D \rightarrow D\) be holomorphic with \(f(0)=0\) and \(f\left(\frac{1}{2}\right)=0\) where \(D=\{z:|z|<1\}\) which of the following statements are correct?
8. For \(z=x+i y \in \mathbb{C}\), define
\( \begin{aligned} & H^{+}=\{z \in \mathbb{C}: y>0\} \\ & H^{-}=\{z \in \mathbb{C}: y<0\} \\ & L^{+}=\{z \in \mathbb{C}: x>0\} \\ & L^{-}=\{z \in \mathbb{C}: x<0\} \end{aligned} \)
The function \(f(z)=\frac{2 z+1}{5 z+3}\)
9. Let \(U\) be an open subset of \(\mathbb{C}\) containing \(D=\{z \in \mathbb{C}:|z| \leq 1\}\) and let \(f: U \rightarrow \mathbb{C}\) be the map defined by
\(f(z)=e^{i \psi} \frac{z-a}{1-\bar{a} z}\) for \(a \in D\), and \(\psi \in[0,2 \pi)\).
Which of the following statements are true?
10. Let \(f: \mathbf{D} \rightarrow \mathbf{D}\) be holomorphic with \(f(0)=\frac{1}{2}\) and \(f\left(\frac{1}{2}\right)=0\), where \(\mathbf{D}=\{z \in \mathbb{C}:|z|<1\}\).
Which of the following is correct?
0 Comments