11. Define
\( \begin{aligned} & H^{+}=\{z \in \mathbb{C}: y>0\} \\ & H^{-}=\{z \in \mathbb{C}: y<0\} \\ & L^{+}=\{z \in \mathbb{C}: x>0\} \\ & L^{-}=\{z \in \mathbb{C}: x<0\} \end{aligned} \)
The function \(f(z)=\frac{z}{3 z+1}\)
12. The region \(\{z \in \mathbb{C}:-1<\operatorname{Re}(z)<1\}\) can be mapped conformally onto
13. The transformation \(w=\frac{z-i}{z+i}\) maps
14. An example of map which is conformal in the whole of its domain of definition is
15. Let \(f: \mathbb{C} \backslash\{3 i\} \rightarrow \mathbb{C}\) be defined by \(f(z)=\frac{z-i}{i z+3}\). Which of the following statements about \(f\) is FALSE?
16. The image of the region \(\{z \in \mathbb{C}: \operatorname{Re}(z)>\operatorname{Im}(z)>0\}\) under the mapping \(z \mapsto e^{z^{2}}\) is
17. Consider the function \(f(z)=\frac{z^{2}+\alpha z}{(z+1)^{2}}\) and \(g(z)=\sinh \left(z-\frac{\pi}{2 \alpha}\right), \alpha \neq 0\).
(i) The residue of \(f(z)\) at its pole is equal to 1. Then the value of \(\alpha\) is
(ii) For the value of \(\alpha\) obtained in the function \(g(z)\) is not conformal at a point
18. Under the transformation \(w=\sqrt{\frac{1-i z}{z-i}}\), the region \(D=\{z \in \mathbb{C}:|z|<1\}\) is transformed to
19. Let \(f\) be a bilinear transformation that maps 1 to 1, \(i\) to \(\infty\), and \(-i\) to 0 then \(f(1)\) is equal to
20. Let \(G_{1}\) and \(G_{2}\) be the images of the disc \(\{z \in \mathbb{C}:|z+1|<1\}\) under the transformations \(w=\frac{(1-i) z+2}{(1+i) z+2}\) and \(w=\frac{(1+i) z+2}{(1-i) z+2}\) resp. then.
0 Comments