Practice Questions for CSIR NET Complex Analysis : Unit disk Automorphism, Schwarz Lemma II

Practice Questions for NET JRF Complex Analysis Assignment: Unit disk Automorphism, Schwarz Lemma

11. Define

\( \begin{aligned} & H^{+}=\{z \in \mathbb{C}: y>0\} \\ & H^{-}=\{z \in \mathbb{C}: y<0\} \\ & L^{+}=\{z \in \mathbb{C}: x>0\} \\ & L^{-}=\{z \in \mathbb{C}: x<0\} \end{aligned} \)

The function \(f(z)=\frac{z}{3 z+1}\)






12. The region \(\{z \in \mathbb{C}:-1<\operatorname{Re}(z)<1\}\) can be mapped conformally onto






13. The transformation \(w=\frac{z-i}{z+i}\) maps






14. An example of map which is conformal in the whole of its domain of definition is






15. Let \(f: \mathbb{C} \backslash\{3 i\} \rightarrow \mathbb{C}\) be defined by \(f(z)=\frac{z-i}{i z+3}\). Which of the following statements about \(f\) is FALSE?






16. The image of the region \(\{z \in \mathbb{C}: \operatorname{Re}(z)>\operatorname{Im}(z)>0\}\) under the mapping \(z \mapsto e^{z^{2}}\) is






17. Consider the function \(f(z)=\frac{z^{2}+\alpha z}{(z+1)^{2}}\) and \(g(z)=\sinh \left(z-\frac{\pi}{2 \alpha}\right), \alpha \neq 0\).

(i) The residue of \(f(z)\) at its pole is equal to 1. Then the value of \(\alpha\) is






(ii) For the value of \(\alpha\) obtained in the function \(g(z)\) is not conformal at a point






18. Under the transformation \(w=\sqrt{\frac{1-i z}{z-i}}\), the region \(D=\{z \in \mathbb{C}:|z|<1\}\) is transformed to






19. Let \(f\) be a bilinear transformation that maps 1 to 1, \(i\) to \(\infty\), and \(-i\) to 0 then \(f(1)\) is equal to






20. Let \(G_{1}\) and \(G_{2}\) be the images of the disc \(\{z \in \mathbb{C}:|z+1|<1\}\) under the transformations \(w=\frac{(1-i) z+2}{(1+i) z+2}\) and \(w=\frac{(1+i) z+2}{(1-i) z+2}\) resp. then.






Post a Comment

0 Comments