21. Let \(w=f(z)\) be the bilinear transformation that maps \(-1,0\) and 1 to \(-i, 1\) and \(i\) respectively. Then \(f(1-i)\) equals
22. The bilinear transformation as which maps the points \(0,1, \infty\) in the \(z\)-plane onto the points \(-i, \infty, 1\) in \(w\)-plane is
23. The function \(f(z)=z^{2}\) maps the \(\mathrm{I}^{\text {st }}\) quadrant onto
24. Let \(w=\frac{a z+b}{c z+d}\) and \(f=\frac{\alpha z+\beta}{r z+s}\) be bilinear (Mobius) transformation, then the following is also a bilinear transformation
25. The fixed points of \(f(z)=\frac{2 i z+5}{z-2 i}\) are
26. The function \(w(z)=-\left(\frac{1}{z}+b z\right),-1 (a.) A half plane (b.) Exterior of the circle (c.) Exterior of an ellipse (d.) Interior of an ellipse
27. The transformation \(w=e^{i \theta}\left(\frac{z-p}{\bar{p} z-1}\right)\), where \(p\) is a constant, maps \(|z|<1\) onto
28. The conjugate (also called symmetric) point of \(1+i\) with respect to circle \(|z-1|=2\) is
29. The bilinear transformation \(w=\frac{2 z}{z-2}\) maps \(\{z:|z-1|<1\}\) onto.
30. The transformation \(w=\frac{1}{2}\left[z+\alpha^{2} z^{-1}\right], \alpha \in \mathbf{R}\) maps the circle \(|z|=r(r \neq \alpha)\) into
0 Comments