Please fill in all the required fields correctly.
(1.) If \(f(z) \& \overline{f(z)}\) both are analytic on Domain \(\mathbb{D}\) then
Explanation:
\(f\) is constant.
(2.) \(f(z)=\left\{\begin{array}{l}z^2+1, z \neq 0 \\ 3, z=0\end{array}\right.\) then
\(\int_{|z|-1} f(z) dz = \ ?\)
\(f\) has a removable singularity, hence the integral is 0.
(3.) Let \(f: \mathbb{C} \rightarrow \mathbb{C}\) be a complex-valued function such that \(f^{(n)}(0)=3^n\) for \(n-\) even and \(f^{(n)}(0)=(n-1)!\) for \(n-\) odd, then -
Evaluate the ROC of the series of \(f\).
(4.)
\[I=\frac{1}{2 \pi i} \int_{|z|-2} \frac{z}{(z-3)(z^n-1)} dz; \quad n \in \mathbb{N} \& n \geq 5\]
Then \(I = ?\)
Use the residue theorem.
(5.) Let \(f\) be a bilinear transformation such that \(f(z+1)=1+f(z) \forall z \neq 0 \& f(0)=0\) then
It has three fixed points, must be the identity map.
(6.) For a complex-valued function \(f(z), z=z_0\) is a removable singularity if and only if -
These all are one-way statements.
(7.) Let \(C\) be the circle \(|z|=1\) oriented in the counterclockwise direction. Then choose the correct integrals -
\(z^2-8z+1=(z-4-\sqrt{15})(z-4+\sqrt{15})\)
Hence, \(z^2-8z+1\) has a singularity inside \(C\) at \(z=4-\sqrt{15}\).
\(\int_C \frac{dz}{z^2-8z+1} = \frac{-\pi i}{\sqrt{15}}\)
Since \(|z|=1\), put \(z=e^{j\theta}\), then evaluate the last integral. \(\Rightarrow \int_c \frac{d z}{z^2-8 z+1}=\int_{-\pi}^\pi \frac{d e^{j \theta}}{e^{20 \theta}-8 e^{j \theta}+1}\) \(=\int_{-\pi}^\pi \frac{i e^{i \theta} d \theta}{e^{2 i \theta}-8 e^{i \theta}+1}\) \(=i \int_{-\pi}^\pi \frac{d \theta}{e^{j \theta}+e^{-i \theta}-8}\) \(=\frac{-i}{2} \int_{-\pi}^\pi \frac{d \theta}{4-\cos \theta}\) \(=-i \int_0^\pi \frac{d \theta}{4-\cos \theta}\)
(8.) Let \(f(z)\) be defined as
Then which of the following are correct -
\(\lim _{z \rightarrow i} f(z) = \lim _{\substack{x \rightarrow 0 \\ y \rightarrow-1}} \frac{(x+i y)^2+3 i(x+i y)+2}{x+i y+1} = i \neq f(-i)\)
(9.) Which of the following is/are true -
For (a) and (b), take \(\exp (z)\), and for (c), take \(u(x, y)=y^{\prime 2}-x\)
(10.) Let \(p(z)\) and \(q(z)\) be polynomials with no common zeroes, and with degrees \(m \& n\) respectively. Let \(f(z)=\frac{p(z)}{q(z)}\), then
Let \(g(z)=f\left(\frac{1}{z}\right)\).
\(g\) has \(m\) poles and \(n\) zeroes.
Hence, \(g(z)\) has a removable singularity at \(z=0\) if \(n \geq m+2\).
\(\operatorname{Res}[f(z) ; \infty]=\lim _{z \rightarrow 0} \frac{1}{z^2} f\left(\frac{1}{z}\right) = 0\) if \(n>m+2\).
0 Comments