10. The function \(u(x)=e^x \sin(x); v(x)=e^x\cos(x)\) satisfy the equation -
Exp: \(u=e^{x} \sin x \Rightarrow \frac{d u}{d x}=e^{x} \sin x+e^{x} \cos x=u+v\)
\(v=e^{x} \cos x \Rightarrow \frac{d v}{d x}=e^{x} \cos x-e^{x} \sin x=v-u\)
\(v \frac{d u}{d x}-u \frac{d v}{d x}=v(u+v)-u(v-u)=u^{2}+v^{2}\)
\(\frac{d^{2} u}{d x^{2}}=\frac{d u}{d x}+\frac{d v}{d x}=u+v+v-u=2 v\)
and \(\frac{d^{2} v}{d x^{2}}=-\frac{d u}{d x}+\frac{d v}{d x}=(v-u)-(v+u)=-2 u\)
0 Comments