Practice Questions for CSIR NET Real Analysis : Limit and Properties of Functions I

Practice Questions for NET JRF Real Analysis Assignment: Series of Real Numbers

1. If \(f(x)=\frac{1}{1-x}\), \(g(x)=f[f(x)]\) and \(h(x)=f[g(x)]\), then what is \(f(x)g(x)h(x)\) equal to?




2. What is the value of \(\lim_{n\rightarrow\infty} \frac{2^{n+1}+3^{n+1}}{2^n+3^n}\)?




3. What is the value of \(\lim_{x\rightarrow 0} \frac{e^x-x-1}{x^2}\)?




4. If \(D\) is the set of all real \(x\) such that \(f(x)=1-e^{(1/x)-1}\) is positive, then what is \(D\) equal to?




5. If \(\lim_{x\rightarrow 0} \frac{x+3\sin x - x^3 - k\sinh x}{1-\cos x+x^2-3x^3}\) exists, then what is the value of \(k\)?




6. What is the value of \(\lim_{x\rightarrow y} \frac{x^y - y^x}{x^x - y^y}\)?




7. Assertion (A): \(\lim_{x\rightarrow\infty} \frac{\sin x}{x}=0\)

Reason (R): \(\lim_{x\rightarrow\infty} \frac{\sin x}{x} = \lim_{x\rightarrow\infty} \sin x \lim_{x\rightarrow\infty} \frac{1}{x}\)




8. What is the value of \(\lim_{x\rightarrow\infty} \{\sin(1/x) + \cos(1/x)\}\)?




9. Which one of the following functions is not well defined?




10. Which one of the following graphs is the correct graph of the function \(y(x) = x\ln(x)\)?





Post a Comment

0 Comments