Practice Questions for CSIR NET Real Analysis : Limit and Properties of Functions II

Practice Questions for NET JRF Real Analysis Assignment: Limit and Properties of Functions

11. What are the values of \(a\) and \(b\) respectively, if \(\lim_{x\rightarrow 0} \frac{\sin ax - \ln(e^x\cos x)}{x\sin bx} = \frac{1}{2}\)?




12. Assertion (A): \(e^{x}\) cannot be expressed as the sum of even and odd functions

Reason (R): \(e^{x}\) is neither an even nor an odd function




13. Given the following limits:

1. \(\lim_{x\rightarrow 0} \frac{\sin x}{x} = 1\)

2. \(\lim_{x\rightarrow \infty} \left(1 + \frac{1}{x}\right) = 1\)

3. \(\lim_{x\rightarrow 0} \frac{\log(x+1)}{x} = 1\)

Which of these are correct?




14. If \(f(x) = \frac{x-5}{x+5}\) for \(x \neq -5\), then the domain of \(f^{-1}(x)\) is




15. \(\lim_{x\rightarrow\infty} (4^x+5^x)^{\frac{1}{x}}\) equals




16. \(\lim_{x\rightarrow 0} \frac{e^x+e^{-x}-2}{x^2}\) is equal to




17. If \(\alpha\) and \(\beta\) are the roots of the equation \(ax^2+bx+c=0\), then \(\lim_{x\rightarrow \alpha} \frac{1-\cos(ax^2+bx+c)}{(x-\alpha)^2}\) is equal to




18. If \(\lim_{x\rightarrow 0} \frac{x(1-\cos x)-ax^2\sin x}{x^5}\) exists and is finite, then the value of \(a\) must be




19. Which of the following statement is true?




20. Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) define \(g: \mathbb{R} \rightarrow \mathbb{R}\) by \(g(x) = f(x)(f(x)+f(-x))\). Then




Post a Comment

0 Comments