Practice Questions for NET JRF Real Analysis Assignment: Sequences of Real Numbers II

Practice Questions for NET JRF Real Analysis Assignment: Sequences of Real Numbers

11. Let \(p(x)\) be a polynomial in the real variable \(x\) of degree 5. Then \(\lim _{n \rightarrow \infty} \frac{p(n)}{2^{n}}\) is:




12. If \(0 < c < d\), then the sequence \(a_{n}=\left(c^{n}+d^{n}\right)^{1/n}\) is:




13. The limit superior and the limit inferior of the following sequence \(\left\langle(-1)^{n}\left(1+\frac{1}{n}\right)\right\rangle\) are:




14. Let \(\left\{a_{n}\right\}\), \(\left\{b_{n}\right\}\), and \(\left\{c_{n}\right\}\) be sequences of real numbers such that \(b_{n}=a_{2n}\) and \(c_{n}=a_{2n+1}\). Then \(\left\{a_{n}\right\}\) being convergent:




15. For each positive integer \(n\), let \(a_{n}\) be the number of points of intersection of the graph \(y=\sin x\) with the line \(y=\frac{x}{n}\). The sequence \(\left\{a_{n}\right\}\) is:




16. The value of \(\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots+a_{n}^{1 / x}}{n}\right)^{n x}\), \(a_{i}>0, \forall i\), is:




17. Let \(\left\langle x_{n}\right\rangle\) be a convergent sequence and \(\left\langle y_{n}\right\rangle\) be a monotonic sequence. Then \(\left\langle x_{n} \cdot y_{n}\right\rangle\):




18. Consider the sequence \(\left\{l_{n}\right\}, n \in \mathbb{N}\) with \(l_{n}=\frac{1}{n+1}+\ldots+\frac{1}{2 n}\). This sequence:




19. The sequence \(\left\{S_{n}\right\}\), where \(S_{n}=1+\frac{1}{4}+\frac{1}{7}+\ldots+\frac{1}{3 n-2}\):




20. The value of \(\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k n}}\) is:




Post a Comment

0 Comments