Practice Questions for NET JRF Real Analysis Assignment: Sequences of Real Numbers III

Practice Questions for NET JRF Real Analysis Assignment: Sequences of Real Numbers

21. Consider the sequence \(\left\{a_{n}\right\}\) of real numbers where \(a_{1}>1\) and \(a_{n+1}=2-\frac{1}{a_{n}}\), \(n \geq 1\). Then the sequence \(\left\{a_{n}\right\}\) is:




22. Let \(\left\langle a_{n}\right\rangle\) be a sequence of real numbers define \(b_{n}\) and \(c_{n}\) as:

\(b_{n}\) = \(n\)th rational terms in \(\left\langle a_{n}\right\rangle\)

\(c_{n}\) = \(n\)th irrational terms in \(\left\langle a_{n}\right\rangle\)

Then:




23. The largest term in sequence \(x_{n}=\frac{1000^{n}}{n !}\), \(n=1,2,3,\ldots\), is:




24. Let the sequence \(\left\{x_{n}\right\}_{n \in \mathbb{N}}\) of real numbers converges to a non-zero real number \(a\) and let \(y_{n}=a-x_{n}\). Then \(\max _{n \in \mathbb{N}}\left\{x_{n}, y_{n}\right\}\) converges to:



25. Let \(\left\{x_{n}\right\}\) be an unbounded sequence of nonzero real numbers. Then:




26. Let \(\left\{a_{n}\right\}\) be a sequence of real numbers. Let \(b_{n}=a_{n}+a_{n+1}\), for \(n=1,2,\ldots\). Which of the following is always true:




27. \(x_{n+1}=\frac{-3}{4} x_{n}\), \(x_{0}=1\). The sequence \(\left\{x_{n}\right\}\):




28. Let \(\left\{x_{n}\right\}\) be a sequence of real numbers such that \(\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=c\), where \(c\) is a positive real number. Then the sequence \(\left\{\frac{x_{n}}{n}\right\}\):




29. If \(\left\langle a_{n}\right\rangle\) is a convergent sequence then \(\lim _{n \rightarrow \infty} n\left(a_{n+1}-a_{n}\right)\):




30. Suppose \(a>0\). Consider the sequence \(a_{n}=n\left(\sqrt[n]{e a}-\sqrt[n]{a}\right)\), \(n \geq 1\). Then:




Post a Comment

0 Comments