Please fill in all the required fields correctly.
(1.) Let \(f:[0,1] \rightarrow \mathbf{R}\) such that \(f(x)=\left\{\begin{array}{l}x \sin \frac{\pi}{x} ; x \neq 0 \\ 0 ; x=0\end{array}\right.\) and \(S=\left\{\alpha \mid f^{\prime}(\alpha)=0\right\}\) then
Explanation:
Use Rolle's theorem.
(2.) Let \(f:(0,1) \rightarrow \mathbb{R}\) be a one-to-one function then
The range must be uncountable, and every uncountable subset must contain irrational numbers.
(3.) Which of the following is true
Series of positive terms converge iff it has a bounded sequence of partial sums.
(4.) Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) is a periodic function and \(P=\{t: f(x+t)=f(x)\}\)
If \(P=\mathbb{R}\) then \(f\) is constant.
(5.) Let \(a_n\) be a sequence, and \(l \in \mathbf{R}\). Then \(l\) is the limit of \(a_n\) if
Definition of limit.
(6.) Let \(f\) be a non-decreasing function on \(\mathbb{R}\), and \(S\) be the set of points of discontinuity of \(f\). Then \(S\) can be similar to
\(f\) can have a countable number of discontinuities.
(7.) If \(a_n=\frac{e^\pi \pi^\pi+e^{2 \pi} \pi^{\pi / 2}+e^{3 \pi} \pi^{\pi / 3}+\ldots+e^{n \pi} \pi^{\pi / n}}{e^\pi+e^{2 \pi}+\ldots+e^{n \pi}}\) then
Use Cauchy-Stolz theorem.
(8.) Consider the functions \(f: \mathbb{R} \setminus\left\{-\frac{d}{c}\right\} \rightarrow \mathbb{R}\) such that
\[f(x)=\frac{a x+b}{c x+d}, \quad ad-bc \neq 0\]
Then
\(f^{\prime}(x)=\frac{ad-bc}{(cx+d)^2}\)
(9.) If \(f: I \rightarrow \mathbb{R}\) is a one-to-one function
Results
(10.) Which of the following is/are correct -
For (a) and (b), the choice for center and radius is uncountable.
0 Comments