21. If \(\lim_{x\rightarrow 0} \frac{\sin 2x + a\sin x}{x^3} = b\), where \(\lim_{x\rightarrow 0} \frac{\sin 2x + a\sin x}{x^3}\) is finite, then the values of \(a\) and \(b\) respectively will be
22. \(\lim_{x\rightarrow\infty} x \sin\left(\frac{1}{x}\right)\) equals
23. Consider the following statements: if \(f(x)=\begin{cases}x & 0 \leq x < 1 \\ 3-x & 1 \leq x \leq 2\end{cases}\) then
24. \(\lim _{x \rightarrow 0} \frac{\sin (a x)}{\sin (b x)}(a \neq 0, b \neq 0)\) is
25. What is the limit of \(\frac{ax + b}{cx}\) as \(x\) approaches infinity?
26. The correct value of \(\lim_{x\rightarrow 0} \frac{x}{\sqrt{1-\cos x}}\) is
27. The limit \(\lim_{x\rightarrow 0^+} \frac{9}{x}\left(\frac{1}{\tan^{-1} x}-\frac{1}{x}\right)\) is
28. If \(X\) and \(Y\) are two non-empty finite sets and \(f: X \rightarrow Y\) and \(g: Y \rightarrow X\) are mappings such that \(g \circ f: X \rightarrow X\) is a surjective (i.e., onto) map, then
29. Let \(P(x)\) be a non-constant polynomial such that \(P(n)=P(-n)\) for all \(n \in \mathbb{N}\). Then \(P'(0)\) is
30. If \(\lim_{x\rightarrow 0} \left(\frac{1+cx}{1-cx}\right)^{\frac{1}{x}} = 4\), then \(\lim_{x\rightarrow 0} \left(\frac{1+2cx}{1-2cx}\right)^{\frac{1}{x}}\) is
0 Comments