31. Let \(f(x)=e^{e^{-x}}\) and define \(g(x)=f(x+1)-f(x)\). Then, as \(x \rightarrow \infty\), the function \(g(x)\) converges to
32. Consider the functions \(f, g: \mathbb{Z} \rightarrow \mathbb{Z}\) defined by \(f(n)=3n+2\) and \(g(n)=n^{2}-5\).
33. Let \(T\) be the graph of the function
Then the reflection of \(T\) in the line \(y=0\) is given by the graph of \(g(x)\) where
34. Let \(a, b, c, d\) be rational numbers with \(ad-bc \neq 0\). Then the function \(f: \mathbb{R} \setminus \mathbb{Q} \rightarrow \mathbb{R}\) defined by \(f(x)=\frac{ax+b}{cx+d}\) is
35. Let \(f:(0, \infty) \rightarrow \mathbb{R}\) be the function defined by \(f(x)=\frac{e^{x}}{x^{x}}\). Then \(\lim_{x\rightarrow \infty} f(x)\) is
36. \(\lim_{n\rightarrow \infty} \left(1-\frac{1}{n^2}\right)^n\) equals
37. \(\lim_{n\rightarrow \infty} \frac{1}{n^4} \sum_{j=0}^{2n-1} j^3\) equals
38. Which of the following are true for the function \(f(x)=\sin(x) \sin\left(\frac{1}{x}\right)\) with \(x \in (0,1)\)?
39. The number of distinct real roots of the equation \(x^9+x^7+x^5+x^3+x+1=0\) is
40. The equation \(11^x+13^x+17^x-19^x=0\) has
41. Let \(f(x)=\tan^{-1} x\) for \(x \in \mathbb{R}\). Then
0 Comments